Процессор
Одним из важнейших устройств компьютера является центральный процессор (CPU — англ. central processing unit, что переводится как «центральное вычислительное устройство»). Именно от типа процессора и его характеристик в первую очередь зависит производительность компьютерной системы в целом.
Процессор (Микропроцессор) — это центральное устройство компьютера, предназначенное для обработки данных и управления работой других устройств.
Наиболее популярные процессоры сегодня производят фирмы Intel, AMD и IBM. Большинство процессоров являются Intel-совместимыми.
Эволюция микропроцессоров
Фирма Intel со времени выпуска самого первого процессора и по сей день является одним из ведущих разработчиков микропроцессоров. Чуть позже конкуренцию Intel составила фирма AMD. В настоящее время Intel и AMD являются ведущими производителями процессоров для персональных компьютеров. Некоторое время конкуренцию им составляли также фирмы Apple Computer, IBM и Motorola, разработавшие процессор Power PC.
Важным этапом в развитии микропроцессорной техники стал процессор i80486. Он был выпущен в 1989 году. Первое новшество заключалось в том, что впервые в центральный процессор стал интегрироваться математический сопроцессор, предназначенный для выполнения арифметических вычислений с плавающей запятой. Кроме того, в этом процессоре была реализован конвейер, применяемый ранее в суперЭВМ.
В марте 1993 года был выпущен процессор Pentium, в котором впервые появляется предсказание переходов. Суть предсказания переходов заключается в том, что при выполнении команды условного перехода (например, при выполнении команды ветвления) специальный блок микропроцессора определяет наиболее вероятное направление перехода, не дожидаясь окончания анализа условия. Процессор начинает выбирать из памяти и выполнять команды по предсказанной ветви программы.
В конце 1993 года фирмы Apple Computer, IBM и Motorola совместно разработали микропроцессор Power PC. В 1994 году он стал использоваться в компьютерах Macintosh. В этом процессоре была реализована суперскалярная обработка, позволяющая выполнять в каждом такте 3 команды. Это стало возможным благодаря использованию архитектуры команд RISC (сокращенный набор команд постоянной длины). Все команды архитектуры RISC имеют одинаковую длину (что облегчает их выборку из памяти) и выполняются процессором за один такт. Все предыдущие процессоры либо использовали сложный набор команд CISC (расширенный набор команд переменной длины), либо относились к разряду CISC-процессоров с RISC-ядром. Процессорам, использующим архитектуру CISC, приходилось тратить дополнительное время на декодирование команд, так как их длина могла меняться от 8 до 108 битов.
Важным преимуществом процессоров PowerPC (начиная с моделей 603 и 604) была пониженная потребляемая мощность. В целях энергосбережения любой незагруженный исполнительный блок отключался, а при необходимости автоматически включался.
Однако в начале 2000-х годов развитие платформы PowerPC зашло в тупик. Создание новой архитектуры потребовало бы огромного количества времени и средств, поэтому в 2006 году фирма Apple решила перевести компьютеры Macintosh на процессоры Intel.
В марте 2000 года фирма AMD выпустила первый процессор с тактовой частотой, превышающей 1 ГГц, который назывался Athlon К7. Это позволило значительно укрепить позиции фирмы на рынке микропроцессорной техники.
В сентябре 2003 года AMD представила первые 64-разрядные процессоры для персональных компьютеров (Athlon 64).
Самым значимым событием 2005 года в области микропроцессоров стало появление в продаже CPU (центрального процессора) с двумя ядрами. Ядро представляет собой часть микропроцессора, содержащую его основные функциональные блоки и осуществляющую выполнение одного потока команд. О причинах перехода к многоядерным процессорам будет сказано в следующем параграфе. Первыми двухъядерными процессорами стали процессоры Pentium D фирмы Intel и Athlon64 Х2 фирмы AMD. Одними из наиболее революционных многоядерных процессоров стали процессоры линейки Core 2 Duo фирмы Intel.
В настоящее время основу рынка микропроцессоров составляют многоядерные процессоры, использующие в своем составе от 2 до 8 ядер, к каковым относятся процессоры Intel Core 2 Quad, Phenom ХЗ и Х4 (фирмы AMD) и другие.
Состав микропроцессора
Современные центральные процессоры для персональных компьютеров выполняются в виде отдельных микросхем и называются микропроцессорами. В дальнейшем будем считать понятия «микропроцессор» и «процессор» равнозначными.
Схема состава микропроцессора
Основным элементом микропроцессора является ядро, от которого зависит большинство характеристик самого процессора. Ядро представляет собой часть микропроцессора, содержащую его основные функциональные блоки и осуществляющую выполнение одного потока команд.
1. АЛУ (Арифметико-логическое устройство)
АЛУ (ALU, Arithmetic and Logic Unit) предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.
Принцип работы АЛУ.
Функционально АЛУ состоит из двух регистров, сумматора и схем управления (местного устройства управления).
Сумматор — это вычислительная схема, выполняющая процедуру сложения поступающих на ее вход двоичных кодов.
Регистры — это быстродействующие ячейки памяти различной длины. При выполнении операций в регистр № 1 помещается первое число, участвующее в операции, а по завершении операции — результат. В регистр № 2 — второе число, участвующее в операции (по завершению операции информация в нем не изменяется).
Схемы управления принимают от шины управления сигналы от устройства управления и преобразуют их в сигналы для управления работой регистров и сумматора АЛУ.
2. УУ (Устройство управления)
УУ (MU, Management Unit):
- формирует и подает на все устройства ПК в нужные моменты времени определенные сигналы управления (управляющие импульсы);
- формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие устройства.
Опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов.
Принцип работы УУ
УУ является функционально наиболее сложным устройством ПК — оно вырабатывает управляющие сигналы, поступающие по шине управления во все блоки машины.
Регистр команд — это запоминающий регистр, в котором хранится код операции (КОП) и адреса операндов, участвующих в операции.
Дешифратор операций — это логический блок, выбирающий в соответствии с поступающим из регистра команд кодом операции (КОП) один из множества имеющихся у него выходов.
Постоянное запоминающее устройство (ПЗУ) микропрограмм хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК процедур обработки информации.
Узел формирования адреса — это устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд и регистров микропроцессорной памяти.
3. МПП (Микропроцессорная память)
Кэш-память (кэш) — сверхбыстрая память, хранящая содержимое наиболее часто используемых ячеек оперативной памяти, а также части программы, к которым процессор обратится с наибольшей долей вероятности. Процессор в первую очередь пытается найти нужные данные именно в кэш-памяти, а если их там не оказывается, обращается к более медленной оперативной памяти. Кэш-память делится на два или три уровня, которые обозначаются LI, L2 и L3 (чаще всего уровней два).
4. Сопроцессор — элемент процессора, выполняющий действия над числами с плавающей запятой.
Характеристики микропроцессора
Тактовая частота. Для каждой выполняемой процессором команды требуется строго определенное количество единиц времени (тактов). Тактовые импульсы формируются генератором тактовой частоты, установленным на системной плате. Чем чаще они генерируются, тем больше команд процессор выполняет за единицу времени, т. е. тем выше его быстродействие. Тактовая частота обычно выражается в мегагерцах. 1 МГц равен 1 миллиону тактов в секунду. Первые модели процессоров Intel (i8008x) работали с тактовыми частотами, меньшими 5 МГц. Сегодня тактовая частота последних процессоров превышает 3 ГГц (1 ГГц = 1000 МГц). Внутренняя архитектура процессора, как и тактовая частота, также влияет на работу процессора, поэтому два CPU с одинаковой тактовой частотой не обязательно будут тратить одинаковое время на выполнение одной команды. Если, например, микропроцессору Intel 80286 требовалось 20 тактов, чтобы выполнить команду умножения двух чисел, то Intel 80486 или старше мог выполнить это же действие за один такт. Некоторые процессоры способны выполнять более одной команды за 1 такт. Их называют суперскалярными.
Различают внутреннюю и внешнюю тактовую частоту.
Внешняя тактовая частота — это частота, с которой процессор обменивается данными с оперативной памятью компьютера. Как уже было сказано выше, она формируется генератором тактовых импульсов (кварцевым резонатором).
Внутренняя тактовая частота — это частота, с которой происходит работа внутри процессора. Именно это значение указывается в прайс-листах фирм, продающих процессоры.
Первые процессоры имели одинаковую внутреннюю и внешнюю частоту, но, начиная с процессора i80486, для определения внутренней частоты стал применяться коэффициент умножения. Этот коэффициент определяется подачей напряжения на определенные контакты центрального процессора.
Разрядность процессора определяет количество битов данных, которые он может принять и обработать одновременно. Первые процессоры были 8-разрядные и 16-разрядные. Современные процессоры имеют разрядность 32 или 64 бита.
Объем кэш-памяти. Как уже было сказано, при поиске нужной информации процессор в первую очередь обращается к кэш-па-мяти. Поэтому чем выше ее объем, тем больше вероятность, что необходимые данные будут найдены именно там.
Технологические нормы. Технологические нормы определяют расстояние между соседними транзисторами. Чем меньше расстояние, тем короче каналы транзисторов и тем больше их быстродействие. Кроме того, уменьшение расстояния понижает уровень мощности тепловыделения. В настоящее время все процессоры производятся с технологическими нормами 0,09 микрона, 0,065 микрона и 0,045 микрона (1 микрон = 10~6 метров). Иногда технологические нормы указывают в нанометрах (1 нм = 10~9 м).
Количество ядер. Большинство современных процессоров выпускаются с несколькими ядрами (обычно их два или четыре). Благодаря наличию нескольких ядер процессор может одновременно обрабатывать несколько потоков программных команд, т. е. решать параллельно несколько задач в режиме реального времени.
Для определения основных характеристик процессора можно воспользоваться специальными сервисными программами. Примером такой программы является CPU-Z (рис. 2.24). Ее можно бесплатно скачать из Интернета.